
5.3   Chain-Growth Polymerization



Principal Steps of Chain-Growth Polymerizations
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• polymerizations require an initiator that attacks a first monomer and creates an active center 

• during propagation, monomers add consecutively to the active center of a growing polymer chain 

• initiation continuously occurs during entire polymerization time 

• termination is a stochastic event, greatly determining the molecular weight distribution

• monomers add rapidly to the active center of a growing chain until that center is deactivated
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Key concept: see reader “Chain-Growth Polymerizations”

Molar Mass Distribution in Chain Grwoth Polymerizations
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• high molar mass polymer is formed from the beginning in a free radical polymerization 
• with increasing time and conversion, the number of each species increases continuously

• Flory-Schulz-type distribution is expected (at least, in the low conversion regime)
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Free Radical Polymerizations



Initiation and Propagation in Free Radical Polymerizations
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• reaction with a monomer instead of immediate recombination with efficiency factor f ≈ 0.3–0.8  
• initiator decomposition is a statistical process, occurring slowly throughout polymerization process 
• radical life time τ = 0.1–10 s, about 100–10’000 propagation steps before chain terminates

• initiator decomposition (slow)
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Termination Reactions in Radical Polymerizations
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• termination by combination and disproportionation often occur both and are stochastic processes

• termination by radical combination

ktc

O OO OCN

n
O OO OCN

n
OO OO CN

n

O OO OCN

n

H

OO OO CN

n

OO OO CN

n

+

+
O OO OCN

n
OO OO CN

n

+
H

O OO OCN

n

H

O OO OCN

n

+ H

ktd

O OO OCN

n
O OO OCN

n
OO OO CN

n

O OO OCN

n

H

OO OO CN

n

OO OO CN

n

+

+
O OO OCN

n
OO OO CN

n

+
H

O OO OCN

n

H

O OO OCN

n

+ H

• termination by disproportionation



Important Vinyl Monomers in Radical Polymerization
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phenylethene 
styrene (PS)

2-methylbutadiene 
isoprene (PI)

butadiene 
(PB)

propenoic acid 
acrylic acid (PAA)

methyl 2-methylpropenoate 
methyl methacrylate (PMMA)

2-methylpropenoic amide 
methacrylamide (for PMAAm)

ethene 
ethylene (PE)

chloroethene 
vinyl chloride (PVC)

tetrafluoroethene 
(PTFE, Teflon)

H Cl F

F
F

F

OHO OMeO NH2O

• vinyl monomers mostly with +M or –M substituents used for technologically relevant polymers



Examples of Radical Initiators and their Decomposition
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• suitable decomposition rates (ki = 10–7–10–6 M s–1) for different temperature regimes 

• goal is to balance initiation and termination reaction rates to reach “steady state” conditions
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• di(tert.-butyl peroxide) (DTPO)

• dicumyl peroxide (DCPO)

• dibenzoyl peroxide (DBPO)
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rate of initiation rate of propagation rate of termination

Kinetics of Chain Growth Polymerization
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• steady state conditions required for stable polymerization, results in reaction order 0.5 for initiator 
• increasing initiator concentration increases polymerization rate but results in decreased molar mass
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= 2fki[I] Rp = −
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dt
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• kinetic chain length:

see reader “Chain-Growth Polymerizations”

with   kt = ktc + ktd



Dispersity in the Low Conversion Regime
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• molecular weight distribution and dispersity depend on termination mechanism

• in reality, termination may occur via both pathways 
• transfer reactions and side-reactions are not taken into consideration
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High Conversion Effects in Bulk Polymerizations
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• gel effect: diffusion-controlled termination (auto-acceleration of propagation) 
• glass effect: monomers get trapped, if the matrix becomes increasingly glassy
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Free Cationic Polymerization



Cationic Polymerization of Vinyl Monomers
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• cationic polymerization like first step of electrophilic addition, while avoiding the second step

• polymerization started by reaction of a vinyl monomer with a strong (cationic) electrophile
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• initiation is like the first step in electrophilic addition to a double bond (of the monomer) 
• reactive chain end is a (highly electron-deficient, elctrophilic, reactive) carbocationic intermediate 
• monomer must have electron-donating residue R to be reactive, but also to stabilize chain end  
• initiator must be sufficiently strong Lewis or Brønsted acid, hence counterion must be well stabilized 
• counterion must be well stabilized / non-nucleophilic also to avoid completing the addition reaction 
• cabocationic chain end and counterion are close ion pairs in organic solvents (even when not shown)

initiation propagation



Examples of Initiators for Cationic Polymerization of Vinyl Monomers

334

• Brønsted acids with large, resonance-stabilized, non-coordinating, non-nucleophilic counterions

• hydrogen halogenides are inefficient as initiators 
• halogenide counterions are still too nucleophilic, complete addition to the double bond
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• Lewis acids such as halides of metals in high oxidation states (BF3, BCl3, AlCl3, TiCl4, SnCl4, SbCl5, ZnCl2)

• two coinitiators that deliver a proton as the actual initiator

• two coinitiators, one with a good leaving group that generates a carbocation
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Examples of Monomers for Cationic Polymerization of Vinyl Monomers
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• electron-donating group to increase reactivity towards electrophile and bias for terminal reaction 
• also necessary to stabilize the carbocationic center on the reactive chain end

• +M substituents or 1,1-dialkyl substitution (stabilized and polarized by hyperconjugation)

vinyl ethers vinyl esters vinyl amines vinyl carbazol

styrene(s)
isoprene 

2-methylbutadiene
butadiene

CH3

CH3
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isobutylene 
1,1-dimethylethene



Chain Transfer Reactions
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• chain transfer to monomer is principal process that limits molar mass and results in Schulz-Flory 
distribution, especially at reaction temperatures above r. t.

• chain transfer by β-hydrogen transfer to monomer is prevalent mechanism
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• individual polymer chain is deactivated but kinetic chain reaction continues 
• both propagation and chain transfer are first order in monomer and in active chain end 
• molar mass determined by kinetics, inverse of chain transfer constant Ctr = ktr / kp 

• polymerization typically performed at (very) low temperatures to increase molar mass 
• β-hydrogen transfer results in double bond chain ends; polymerizable hence risk of branching

very fast

ktr



Termination Reactions
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• different from radical polymerization, terminations are not prevalent in cationic polymerizations

• chain termination is possible by combination with counterion (in some cases)
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Quenching
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• quenching generally useless for introducing end groups deliberately because of chain transfer 
• cationic polymerizations require careful scavenging of inadvertent nucleophiles (including water)

• carbocationic chain end remains reactive intermediate, is “quenched” (deactivated) by nucleophiles
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• strong nucleophiles (anionic, with wekaly acidic counterions) result in irreversible termination 
• weak nucleophiles that release strongly acidic coutnerion for accelerated chain transfer  
• useful to tailor molar mass control
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Coordination Polymerization



Generic Mechanism of Transition-Metal-Catalyzed Coordination Polymerization
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• coordination (insertion) polymerization of alkenes by transition metals with empty coordination site

• initiation by first alkene monomer adding as ligand to the vacant coordination site (empty d orbital) 
• propagation by migratory insertion of the monomer into Mt–C bond, polymer chain migrates 

• via four-electron, four-membered cyclic transition state  
• finalized by bond metathesis, generating new Mt–C & C–C bonds, reforming empty coordination site 

• chain transfer by β-hydrogen elimination from last unit, generates double bond chain end
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^
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• heterogeneous catalysts are solid particles dispersed in reaction medium, only surface is active 
• homogeneous catatalysts are defined organometallic compounds, in homogeneous solution

• typical catalysts are a wide variety of transition metal solids and moelcular organometallic compounds
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Catalyst Activation
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• alkylation of stable precursors typically achieved with AlMe3 or methylaluminoxide (MAO) 
• alkylated metal center with a free coordination site is highly electron-deficient species  
• very strong Lewis/Brønsted acid with weakly coordinating anion required for its formation 
• MAO (clusters of about 20 Al atoms, unknown structure) does both, common in industrial processes

• catalyst activation requires generating an alkylated metal center with a free coordination site

alkylating agent Brønsted or Lewis acid
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Example of a Ziegler-Natta Polymerization via Cossee-Arlman Mechanism
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• migratory insertion means that polymer switches coordination site with every insertion step
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Example of a Ziegler-Natta Polymerization
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• Cossee Arlman mechanism: monomer coordination to empty coordination site on surface metal atom 
• migratory insertion into Mt–C bond, means that polymer switches coordination site at every step 
• chain transfer generates terminal double bonds, can result in branches when polymerized
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