5.3 Chain-Growth Polymerization
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Principal Steps of Chain-Growth Polymerizations

e monomers add rapidly to the active center of a growing chain until that center is deactivated

initiation propagation termination
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time & conversion

® polymerizations require an initiator that attacks a first monomer and creates an active center
® during propagation, monomers add consecutively to the active center of a growing polymer chain
® initiation continuously occurs during entire polymerization time

® termination is a stochastic event, greatly determining the molecular weight distribution
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Molar Mass Distribution in Chain Grwoth Polymerizations

® Flory-Schulz-type distribution is expected (at least, in the low conversion regime)
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® high molar mass polymer is formed from the beginning in a free radical polymerization
® with increasing time and conversion, the number of each species increases continuously

Key concept: see reader “Chain-Growth Polymerizations”



Free Radical Polymerizations
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Initiation and Propagation in Free Radical Polymerizations

initiator decomposition (slow)
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reaction with a monomer instead of immediate recombination with efficiency factor f = 0.3-0.8
initiator decomposition is a statistical process, occurring slowly throughout polymerization process
radical life time t=0.1-10 s, about 100-10°000 propagation steps before chain terminates
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Termination Reactions in Radical Polymerizations

® termination by radical combination
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® termination by disproportionation
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® termination by combination and disproportionation often occur both and are stochastic processes
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Important Vinyl Monomers in Radical Polymerization
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ethene chloroethene tetrafluoroethene
ethylene (PE) vinyl chloride (PVC) (PTFE, Teflon)
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butadiene 2-methylbutadiene phenylethene
(PB) isoprene (Pl) styrene (PS)
D X X
O~ "OH O~ 'OMe O~ "NH,
propenoic acid methyl 2-methylpropenoate 2-methylpropenoic amide
acrylic acid (PAA) methyl methacrylate (PMMA) methacrylamide (for PMAAmM)

® vinyl monomers mostly with +M or —M substituents used for technologically relevant polymers
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Examples of Radical Initiators and their Decomposition

® azobis(isobutyronitrile) (AIBN) v 40-80°C
NC N‘\NJ%CN > 2 )\

e di(tert.-butyl peroxide) (DTPO)

100-140 °C
X CO < g

® dicumyl peroxide (DCPO)
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e dibenzoyl peroxide (DBPO)

S/

O

O o
FO“@ 60-100 °C ~ 0,
' 2 2 X
@AOJ ] U T, |
O Z

® suitable decomposition rates (ki = 10-7-10-¢ M s-1) for different temperature regimes

® goal is to balance initiation and termination reaction rates to reach “steady state” conditions
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Kinetics of Chain Growth Polymerization

rate of initiation
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® steady-state-conditions:

® kinetic chain length:

rate of propagation rate of termination
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® steady state conditions required for stable polymerization, results in reaction order 0.5 for initiator

® increasing initiator concentration increases polymerization rate but results in decreased molar mass

see reader “Chain-Growth Polymerizations” 329
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Dispersity in the Low Conversion Regime

® in reality, termination may occur via both pathways

® transfer reactions and side-reactions are not taken into consideration
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® molecular weight distribution and dispersity depend on termination mechanism
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High Conversion Effects in Bulk Polymerizations

e gel effect: diffusion-controlled termination (auto-acceleration of propagation)

® glass effect: monomers get trapped, if the matrix becomes increasingly glassy

effect
induction \\k\
period

steady-state

0.001 001 0.1 1 10 100
monomer consumption / %

cPrL

induction

degree of polymerization

steady-state

low conversion .
1 gel o

]
, effect |

7\
1

' \

100

monomer consumption / %

331



Free Cationic Polymerization



Cationic Polymerization of Vinyl Monomers

® polymerization started by reaction of a vinyl monomer with a strong (cationic) electrophile

initiation propagation

e initiation is like the first step in electrophilic addition to a double bond (of the monomer)

® reactive chain end is a (highly electron-deficient, elctrophilic, reactive) carbocationic intermediate

e monomer must have electron-donating residue R to be reactive, but also to stabilize chain end

® initiator must be sufficiently strong Lewis or Brgnsted acid, hence counterion must be well stabilized
e counterion must be well stabilized / non-nucleophilic also to avoid completing the addition reaction

® cabocationic chain end and counterion are close ion pairs in organic solvents (even when not shown)

® cationic polymerization like first step of electrophilic addition, while avoiding the second step
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Examples of Initiators for Cationic Polymerization of Vinyl Monomers

® Bronsted acids with large, resonance-stabilized, non-coordinating, non-nucleophilic counterions
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e hydrogen halogenides are inefficient as initiators

® halogenide counterions are still too nucleophilic, complete addition to the double bond

® [ewis acids such as halides of metals in high oxidation states (BFs, BCls, AlCl3, TiCls, SnCls, SbCls, ZnCl,)

® two coinitiators that deliver a proton as the actual initiator

H\o e H oo
(). H=H 0 20
F"'/"B—F ¢ > F“;B\F -« > H@ F“;B\F
i e -

® two coinitiators, one with a good leaving group that generates a carbocation
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Examples of Monomers for Cationic Polymerization of Vinyl Monomers

e +M substituents or 1,1-dialkyl substitution (stabilized and polarized by hyperconjugation)

vinyl ethers viny| esters vinyl amines vinyl carbazol
_ DY p
Z CH,
isoprene butadiene isobutylene
styrene(s) 2-methylbutadiene 1,1-dimethylethene

® electron-donating group to increase reactivity towards electrophile and bias for terminal reaction
® also necessary to stabilize the carbocationic center on the reactive chain end
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Chain Transfer Reactions

® chain transfer by B-hydrogen transfer to monomer is prevalent mechanism

very fast

e individual polymer chain is deactivated but kinetic chain reaction continues

® both propagation and chain transfer are first order in monomer and in active chain end
e molar mass determined by kinetics, inverse of chain transfer constant Cir = ki / ko

® polymerization typically performed at (very) low temperatures to increase molar mass

e (3-hydrogen transfer results in double bond chain ends; polymerizable hence risk of branching

® chain transfer to monomer is principal process that limits molar mass and results in Schulz-Flory
distribution, especially at reaction temperatures abover r. t.
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Termination Reactions

e chain termination is possible by combination with counterion (in some cases)
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e different from radical polymerization, terminations are not prevalent in cationic polymerizations
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Quenching

® carbocationic chain end remains reactive intermediate, is “quenched” (deactivated) by nucleophiles
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e strong nucleophiles (anionic, with wekaly acidic counterions) result in irreversible termination

e weak nucleophiles that release strongly acidic coutnerion for accelerated chain transfer

e useful to tailor molar mass control

® quenching generally useless for introducing end groups deliberately because of chain transfer

® cationic polymerizations require careful scavenging of inadvertent nucleophiles (including water)
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Coordination Polymerization



Generic Mechanism of Transition-Metal-Catalyzed Coordination Polymerization

e coordination (insertion) polymerization of alkenes by transition metals with empty coordination site

migratory insertion by bond metathesis
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® initiation by first alkene monomer adding as ligand to the vacant coordination site (empty d orbital)
® propagation by migratory insertion of the monomer into Mt—C bond, polymer chain migrates
® via four-electron, four-membered cyclic transition state
e finalized by bond metathesis, generating new Mt—C & C—C bonds, reforming empty coordination site

® chain transfer by B-hydrogen elimination from last unit, generates double bond chain end
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® typical catalysts are a wide variety of transition metal solids and moelcular organometallic compounds

heterogeneous catalysts

crystal surface particle surface
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bulk crystal solid silica

Ziegler-Natta Phillips

chromium oxide
supported on silica gel

crystalline TiCls particles

homogeneous catalysts

Brookhart

palladium diimines

Brintzinger

Zirconocenes

® heterogeneous catalysts are solid particles dispersed in reaction medium, only surface is active

® homogeneous catatalysts are defined organometallic compounds, in homogeneous solution
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Catalyst Activation

e catalyst activation requires generating an alkylated metal center with a free coordination site

alkylating agent Brgnsted or Lewis acid

2 AlMe,

® alkylation of stable precursors typically achieved with AlMes or methylaluminoxide (MAO)

® alkylated metal center with a free coordination site is highly electron-deficient species

® very strong Lewis/Brgnsted acid with weakly coordinating anion required for its formation

® MAO (clusters of about 20 Al atoms, unknown structure) does both, common in industrial processes
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Example of a Ziegler-Natta Polymerization via Cossee-Arlman Mechanism
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® migratory insertion means that polymer switches coordination site with every insertion step
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Example of a Ziegler-Natta Polymerization
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® Cossee Arlman mechanism: monomer coordination to empty coordination site on surface metal atom

1

® migratory insertion into Mt—C bond, means that polymer switches coordination site at every step
® chain transfer generates terminal double bonds, can result in branches when polymerized
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